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Abstract 
An inequality is discussed expressing the idea that a physical quantity associated with 
massless fields should 'propagate at the speed of light'. It is shown that the inequality 
holds for the energy of massless bosons of spin zero and one. 

1. Introduction 
The non-existence of a real, bilinear, covariant and conserved probability 

current density jU(x) for free massless bosons and energy density tensor 
T~r(x) for free massless fermions such that j~ 0 and T~176 0 
(Rashid, 1970) has led Petzold and Gerlach to formulate an inequality 
which they call 'a criterion for the mass of a free field to be zero' (Petzold 
& Gerlach, 1971). Their reasoning is similar to that on which the formula- 
tion of the concept of 'macrocausality' was based in connection with the 
propagation of (positive) physical quantities related to fields with non-zero 
mass (Gerlach et aL, 1967a; Gerlach, 1967b). 

In this paper we present a more general statement of Petzold's inequality 
and show that despite the rather classical argument used to formulate it, 
the inequality holds for certain well-known (positive) densities related to 
free massless fields. 

2. Formulation of  the Inequality 
Consider an ensemble of free massless point particles moving at the 

speed of light along straight lines. All particles at the point x at time x ~ 
will at time x ~ be on the sphere 

X Or 
S~o,x = { x ' l ( x  - x ' )  2 = ( x  ~ - x ~  2} 

(the speed of light is set equal to unity). Thus all particles in a region Fxo 
at time x ~ will be in the region 

xO' 
GxO' = U S~0,X 

X~FxO 
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at time x ~ The suffix x ~ is attached to the symbol denoting a region for 
the sake of clarity. Let N(x ~ denote the number of particles in F~,o 
at time x ~ or their energy. By noticing that at time x ~ there may be particles 
in G~o, which at time x ~ occupied regions other than F~o, one may write 
down the inequality 

N(x ~ Gxo,) >>. N(x~ (2.1) 

In a sense (2.1) expresses the idea that the particles or their energy 
'propagate at the speed of light'.I" We show that the inequality holds for 
the energy of free massless bosons of spin zero and unity as well as for the 
position probability of free neutrinos.~. Huygens'  principle does not hold 
for the densities involved, since these are bilinear in the fields. We are aware 
of  the fact that (2.1) has little to do with 'causality' in the sense of quantum 
physics since at no stage of the argument any measurement of  position or 
energy (density) was performed. This is precisely the reason why we think 
the result to be of  interest at least from a mathematical point of  view. 

3. The Massless Complex Scalar Field 
In order to prove the inequality (2.1) for the energy of the massless 

complex scalar field we proceed as follows. Consider an arbitrary set of 
four square integrable functions F,'a(x') at time x ~ (not necessarily a four 
vector) and define the set of  functions F,a(x) at time x ~ by 

FnA(X) =f,0(X) +fort(X) (3.1) 
3 

Foa(X) = ~ f~u(x) (3.2) 
U=0 

where 

] D tax - x') F;A(x ') d 3 x' (3.3) f.,(x) 

D(x) is the usual 'D  function'w and Greek indices run from zero to three, 
Latin indices from one to three. Dl,(x ) denotes the derivative of  D(x) 
with respect to x ". The quantity 

T(x) = E [F,A(x)I 2 (3.4) 

has the same form as the energy density although it is not an energy density 
in general. Now one may write 

T(x) = ~ IL,(x)l 2 + Z(x) + S(x) + s*(x) (3.5) 

i" One may easily convince oneself that a necessary condition for the validity of (2.1) 
is that the relevant densities be non-negative. This is not very interesting however since 
the non-negativeness of the quantities integrated over arbitrary volumes was assumed 
in the formulation. 

:} Petzold & Gerlach (1971) formulated (2.1) only for the special case where Fxo is a 
sphere and proved a much weaker form of the inequality. 

w See, for instance, Schweber (1964) for the propagators of free massless fields. Com- 
pendium 4, page 912. 
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where 

and 

Z(x) = E { f  ,* (x)f~,m(x) - f  ~*, (x) fm,(x)} 
m,R 

(3.6) 

S(x) = ~ {f*o(X) fom(X) + f~o (x) fmm(x)} (3.7) 
m 

The integral of T(x) may be evaluated in terms of F~A(x ') by using various 
properties of D(x).'~ The result is 

f S(x)d3x=O, fz(x)a3x<.O (3.8) 

and 

Hence we have the inequality 

f ~ [F;A(xt)]2E3x'> f ~ IFllA(x)]2d3x (3.10) 

where the integrals extend over all space. At this stage consider a region 
F~  properly containing Fxo and define the region @ ,  in the same manner 
as Gxo' was defined earlier by starting with Fxo. Let ~b(x) be a complex scalar 
solution of the Klein-Gordon equation for zero mass for which the total 
energy is finite. Put F2(x' ) = qSlu(x' ) for x' e Gxo, and zero for x' ~ G~'. 
Then it follows from the properties of D(x) and its derivatives that 
F~(x) = ~b i,(x) for x ~ F~o. Thus the inequality (3.10) becomes 

f T~176 ') d x' >I f T~176 d x + 0(,7) (3.1 1) 
Gx Or Fx 0 

where T~176 = ~kb(x)[  2 is the energy density and ~/denotes the difference 
in volume between G~ ' and G~o, and tends to zero as F~  tends to Fxo. 
This completes the proof of the inequality (2.1) for the energy &the massless 
complex scalar field. 

4. The Energy of the Free Electromagnetic FieM 

The w o o f  of (2.1) for the energy of the free electromagnetic field is 
similar to that of the scalar field. Consider arbitrary square integrable 
functions E'a(x'), H'A(x ') at time x ~ where a = (81,82,a3). Define the 
functions Ea(x), HA(x) at time x ~ by 

EA(x) = ~ x  o e(x) + YAh(x) (4.1) 

HA(x) = ~x0O h(x) - VAe(x) (4.2) 

1" See, for instance, Schweber (1964) for the propagators of free massless fields. Com- 
pendium 4, page 912. 
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e(x) = f D ( x  -- x ' )  E'A(x ") d 3 x' 

h(x) = f D(x - x') H'~(x ') d ~ x' 

(4.3) 

(4.4) 

T(x) ~- Ea2(x) + Ha2(x) 

+ zl(x) + Z2(x) + Z3(x) (4.5) 

has the form of an energy density, although it need not be an energy density 
in general. Here 

0 2 
Zl(x)=-~{~x,e(x) } + (VAe(x)) 2 

Z2(x) = - ~ h ( x )  + {VAh(x)} 2 (4.6) 

Z3(x) = 2 ~  e g.,a {~xx o e,,(x)o~h~(x)+ ~ e,(x)~o h,(x)} 

and g..,t is the Levi-Cevita tensor. By using the properties of D(x) we find 
that on integration the first two terms (4.5) reduce to • E'a~(x ') d3x ' and 

H'A2(x')dZx ' respectively while j" Zl(x)d3x <~ 0, ; Zz(x)d3x <~ 0 and 
S Z3(x) d3x = 0. Hence we have 

f {E'a~(x ') + H'a2(x')} d a x'/> f {Ea~(x) + HAS(x)} d 3 x (4.7) 

Let E(x'), H(x') be a solution of Maxwell's equations in empty space for 
which the total energy is finite. Proceeding as before, we put E'A(x ') = E(x') 
and H'A(x ') = H(x') for x ' s  G~o, and zero outside G~,. Then it follows 
from the properties of D(x) that EA(x)= E(X) and HA(x)= H(x) for 
x s F~o. Hence, as before, 

f > f r~176 + o(.) 
GxO" Fx0 

where q -+ 0 as F~  -+ F~o and T~176 ~- EZ(x) + H2(x) is the energy density. 

5. The Position Probability for Neutrinos 
We do not write out the proof of (2.1) for the position probability of 

neutrinos which is similar to the earlier procedure. There is, however, one 
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difference: instead of the general inequalities (3.10) and (4.7) one obtains 
an equality. The result then is 

fjo x.  x. f 
GxO' FxO 

and 

wherej~ = tp(x) S ~ O(x) >/0 

0 
~x 6 O(x) = - r ~  v~,(x), f j~  d a x < 

6. Final Remarks 

(a) The validity of  (2.1) for the quantities discussed may seem to suggest 
that in some classical sense these quantities propagate at the speed of light. 
The inequality, however, is much more general than the classical argument 
used to formulate it. 

(b) The validity of  (2.1) is not trivial. In fact it is not difficult to use fields 
obeying Huygens'  Principle to construct positive 'densities' violating the 
inequality. 

(c) Since Huygens'  Principle does not hold for solutions of  the massless 
Kle in-Gordon equation in an even number of  space dimensions the 
inequality will not be valid, e.g. in two-dimensional problems. 

(d) In one space dimension the result is trivial. 

Acknowledgements 

I am greatly indebted to Prof. J. Petzold for suggesting the problem and for many 
valuable discussions. Furthermore I acknowledge financial support from the C.S.I.R., 
Pretoria. 

References 

Gerlach, B., Gromes, D. and Petzold, J. (1967a). Zeitschriftfiir Physik, 204, 1. 
Gerlach, B. (1967b). Zeitschriftfiir Physik, 229, 44. 
Petzold, J. and Gerlach, B. (1971). Zeitschriftfiir Physik, 244, 129. 
Rashid, Kh. (1970). Zeitschriftfiir Physik, 235, 181. 
Schweber, S. S. (1964). An Introduction to Relativistic Quantum FieM Theory. Harper 

and Row, New York. 


